Bacchis Subtilis

Abe, T., Higashi, M., and Bignell, D. (2000). ''Termites: Evolution, Sociality, Symbiosis, Ecology.'' Kluwer Academic Press, Dordrecht, The Netherlands.

Bignell, D. E. (1994). Soil-feeding and gut morphology in higher termites. In ''Nourishment and Evolution in Insect Societies'' (J. H. Hunt and C. A. Nalepa, eds.), pp. 131-157. Westview Press, Oxford.

Bignell, D., and Eggleton, P. (2000). Termites in ecosystems. In ''Termites: Evolution, Sociality, Symbiosis, Ecology'' (T. Abe, M. Higashi, and D. Bignell, eds.), pp. 363-387. Kluwer Academic Press, Dordrecht, The Netherlands.

Bignell, D. E., Eggleton, P., Nunes, L., and Thomas, K. L. (1997). Termites as mediators of carbon fluxes in tropical forest: Budgets for carbon dioxide and methane emissions. In ''Forests and Insects'' (A. D. Watt, N. E. Stork, and M. D. Hunter, eds.), pp. 109-134. Chapman and Hall PLC, London, UK.

Brauman, A. (2000). Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. Eur. J. Soil Sci. 36,117-125.

Brauman, A., Kane, M. D., Labat, M., and Breznak, J. A. (1992). Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257,1384-1387.

Brauman, A., Dore, J., Eggleton, P., Bignell, D., Breznak, J. A., and Kane, M. D. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol. 35, 27-36.

Breznak, J. A. (2000). Ecology of prokaryotic microbes in the guts of woodland litter-feeding termites. In ''Termites: Evolution, Sociality, Symbiosis, Ecology'' (T. Abe, M. Higashi, and D. Bignell, eds.), pp. 209-232. Kluwer Academic Press, Dordrecht, The Netherlands.

Breznak, J. A., and Kane, M. D. (1990). Microbial H2/CO2 acetogenesis in animal guts— nature and nutritional significance. FEMS Microbiol. Rev. 87, 309-313.

Brune, A. (1998). Termite guts: The world's smallest bioreactors. Trends in Biotechnology 16, 16-21.

Brune, A., and Friedrich, M. (2000). Microecology of the termite gut: Structure and function on a microscale. Curr. Opin. Microbiol. 3, 263-269.

Brune, A., and Kuhl, M. (1996). pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol. 42, 1121-1127.

Brune, A., Emerson, D., and Breznak, J. A. (1995). The termite gut microflora as an oxygen sink—microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61, 2681-2687.

Chin, K. J., Lukow, T., and Conrad, R. (1999). Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65, 2341-2349.

Collins, N. M. (1983). Termite populations and their role in litter removal in Malaysian rain forests. In "Tropical Rain Forest: Ecology and Management" (S. L. Sutton, T. C. Whitmore, and A. C. Chadwick, eds.), pp. 311-325. Blackwell Scientific Publications, Oxford.

Cord-Ruwisch, R., Seitz, H. J., and Conrad, R. (1988). The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron-acceptor. Arch. Microbiol. 149,350-357.

Davies, R. G., Eggleton, P., Jones, D. T., Gathorne-Hardy, F. J., and Hernandez, L. M. (2003). Evolution of termite functional diversity: Analysis and synthesis of local ecological and regional influences on local species richness. J. Biogeog. 30, 847-877.

Donovan, S. E., Eggleton, P., and Bignell, D. E. (2001). Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26, 356-366.

Donovan, S. E., Purdy, K. J., Kane, M. D., and Eggleton, P. (2004). Comparison of the euryarchaeal microbial community in guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl. Environ. Microbiol. 70,3884-3892.

Ebert, A., and Brune, A. (1997). Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol. 63, 4039-4046.

Eggleton, P., and Tayasu, I. (2001). Feeding groups, lifetypes and the global ecology of termites. Ecol. Res. 16, 941-960.

Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., and Bignell, N. C. (1996). The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans. R. Soc. B Biol. Sci. 351,51-68.

Elshahed, M. S., Savage, K. N., Oren, A., Gutierrez, M. C., Ventosa, A., and Krumholz, L. R. (2004). Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int. J. Syst. Evol. Microbiol. 54, 2275-2279.

Embley, T. M., Finlay, B. J., and Brown, S. (1992). RNA sequence analysis shows that symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol. Lett. 97, 57-62.

Finlay, B. J., Embley, T. M., and Fenchel, T. (1993). A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J. Gen. Microbiol. 139,371-378.

Friedrich, M. W., Schmitt-Wagner, D., Lueders, T., and Brune, A. (2001). Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67, 4880-4890.

Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F., and Moletta, R. (1997). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63, 2802-2813.

Hongoh, Y., Deevong, P., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Vongkaluang, C., Noparatnaraporn, N., and Kudo, T. (2005). Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71, 6590-6599.

Inward, D., Vogler, A., and Eggleton, P. (2007). A comprehensive new phylogenetic reconstruction for termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. in press.

Kane, M. D., and Mueller, U. G. (2002). Insights from insect-microbe symbioses. In ''Biodiversity of Microbial Life: Foundation of Earth's Biosphere'' (J. T. Staley and A.-L. Reysenbech, eds.), pp. 289-313. Wiley-Liss, Inc., New York, USA.

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., and Dhillion, S. (1997). Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Sci. 33,159-193.

Leadbetter, J. R., and Breznak, J. A. (1996). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62,3620-3631.

Leadbetter, J. R., Crosby, L. D., and Breznak, J. A. (1998). Methanobrevibacterfiliformis sp. nov., a filamentous methanogen from termite hindguts. Arch. Microbiol. 169, 287-292.

Lee, K. E., and Wood, T. G. (1971). ''Termites and Soils.'' Academic Press, London.

Lee, M. J., Schreurs, P. J., Messer, A. C., and Zinder, S. H. (1987). Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr. Microbiol. 15, 337-341.

Lobry de Bruyn, L. A., and Conacher, A. J. (1990). The role of termites and ants in soil modification. A review. Aust. J. Soil Res. 28,55-93.

Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M., and Schleifer, K. H. (1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554-568.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Kumar, Y., Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., et al. (2004). ARB: A software environment for sequence data. Nucleic Acids Res. 32,1363-1371.

Messer, A. C., and Lee, M. J. (1989). Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb. Ecol. 18, 275-284.

Munson, M. A., Nedwell, D. B., and Embley, T. M. (1997). Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63, 4729-4733.

Ohkuma, M., and Kudo, T. (1998). Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol. Lett. 164, 389-395.

Ohkuma, M., Noda, S., Horikoshi, K., and Kudo, T. (1995). Phylogeny of symbiotic methano-gens in the gut of the termite Reticulitermes speratus. FEMS Microbiol. Lett. 134, 45-50.

Ohkuma, M., Noda, S., and Kudo, T. (1999). Phylogenetic relationships of symbiotic metha-nogens in diverse termites. FEMS Microbiol. Lett. 171,147-153.

Oren, A. (2000). The order Halobacteriales. In ''The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community'' (M. Dworkin, ed.). Springer-Verlag, New York.

Purdy, K. J., Munson, M. A., Nedwell, D. B., and Embley, T. M. (2002). Comparison of the molecular diversity of the methanogenic community at the freshwater and marine ends of a UK estuary. FEMS Microbiol. Ecol. 39, 17-21.

Purdy, K. J., Cresswell-Maynard, T., Nedwell, D. B., McGenity, T. J., Grant, W. D., Timmis, K. N., and Embley, T. M. (2004). Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 6,591-595.

Savage, K. N., Krumholz, L. R., Oren, A., and Elshahed, M. S. (2007). Haladaptatus pauciha-lophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int. J. Syst. Evol. Microbiol. 57,19-24.

Schmitt-Wagner, D., and Brune, A. (1999). Hydrogen profiles and localization of methano-genic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol. 65, 4490-4496.

Shinzato, N., Matsumoto, T., Yamaoka, I., Oshima, T., and Yamagishi, A. (1999). Phyloge-netic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl. Environ. Microbiol. 65, 837-840.

Swofford, D. L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts, USA.

Tajima, K., Nagamine, T., Matsui, H., Nakamura, M., and Aminov, R. I. (2001). Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol. Lett. 200, 67-72.

Tholen, A., and Brune, A. (1999). Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubi-termes spp.). Appl. Environ. Microbiol. 65,4497-4505.

Tokura, M., Ohkuma, M., and Kudo, T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol. Ecol. 33, 233-240.

Wood, T. G., and Johnson, R. A. (1986). The biology, physiology, and ecology of termites. In ''The Economic Impact and Control of Social Insects'' (S. B. Vinson, ed.), pp. 1-68. Praeger, New York.

Wood, T. G., and Sands, W. A. (1978). The role of termites in ecosystems. In ''Production Ecology of Ants and Termites'' (M. V. Brian, ed.), pp. 245-292. Cambridge University Press, Cambridge.

Wood, T. G., Johnson, R. A., Bacchus, S., Shittu, M. O., and Anderson, J. M. (1982). Abundance and distribution of termites (Isoptera) in a riparian forest in the Southern Guinea savanna zone of Nigeria. Biotropica 14, 25-39.

Yang, J. F., Bordeaux, M., and Smith, P. H. (1985). Isolation of methanogenic bacteria from termites. In ''85th Annual Meeting of the American Society of Microbiology,'' p. 160. American Society of Microbiology, USA, Las Vegas, Nevada, USA.

Oplan Termites

Oplan Termites

You Might Start Missing Your Termites After Kickin'em Out. After All, They Have Been Your Roommates For Quite A While. Enraged With How The Termites Have Eaten Up Your Antique Furniture? Can't Wait To Have Them Exterminated Completely From The Face Of The Earth? Fret Not. We Will Tell You How To Get Rid Of Them From Your House At Least. If Not From The Face The Earth.

Get My Free Ebook

Post a comment