- A - 2
- A A
- Dbu
- A small alignment example
- Aacc
- Ac
- Accgagac C
- Acknowledgment of support
- AH rc 4 A1 n 1 and n
- Algebraic Geometry
- Algorithm 114 EM Algorithm
- Analysis of Point Mutations in Vertebrate Genomes
- Applications of Interval Methods to Phylogenetics
- Atgagtcttaaacgctggccatgtgccatcttagacagcg
- Atggcggagtctgtggagcgcctgcagcagcgggtccaggagctggagcgggaactt
- Atgtga
- Au nn eu n 0iaiiuiai2u2aimum and 0 n 0 iljl il il
- B b A aj aj A A 9 j1
- Bcde Ggggggg
- Biology
- Bounds for Optimal Sequence Alignment
- C C G
- C eeRd fie2e3e me
- Caa
- Cc
- Cccccccc
- Computation
- Contents
- Ctaattacaaagccaacatctgatcaagccagcatccagaggggattatcgcatgcacga 55002169 Gtattagacctcattaccagcttgagtgcaaaattattacatcttgtaattggatggtga 55002229 Gatttatatacagatcggcccggtttctgtaagattgtaattaca
- Ctcacgtgatgagagcattctcagaccgtgacgcgtgtagcagcggctc11
- Ctctgcggcgttcgtctcgggtgggttggggggtgggggtgtggcgcaaggtgtgaag Cacgacgacgatctacgacgagcgagtgatgagagtgatgagcgacgacgagcactag Aagcgacgactactatcgacgagcagccgagatgatgatgaaagagagaga
- D
- Ddj oejie2 me2
- E - 2
- E f eUTe e E E hirs UAO099 125
- E122
- ECCT 1 L i l
- EEEE vw
- Eij0E2j0Em0 133 ji ji ji
- Eitx i2 fieto
- Eji 0a
- Equations Defining Hidden Markov Models
- Evolutionary models
- Expectation Maximization
- F - 2
- Rd Rm 0 0 p
- F84
- Fce0i
- Fclfc2fcn Y I Y RfcR TT Efcs EfctE
- Fij0 fij0
- G - 2
- Hyi
- Genomes
- Geometry of Markov Chains
- Ggg
- Guide to the chapters
- Hidden Markov models
- Homology Mapping with Markov Random Fields
- 0 06
- 1 2 by
- I1
- I44 Tree models
- I9 x A Uj ij
- Ijkl
- Inference Functions
- Info - 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
- Insertion and deletion
- Introduction to the four themes
- Jc69
- K - 2
- K8i
- L0 0AinU 0v n dVjj
- L0 fil f 0 fiN 0 lUl rn0um116
- Linear models
- Log L0 Ui logfl0U2log20 Umlogfm0 118
- Macaulay2
- Magma
- Main program and the polymake template library
- Maple
- Markov chains
- Matlab
- Mavid
- Multiz
- Mutagenetic Tree Models
- M[ij 1 w ct2
- N - 2
- N Aa Ac Ag At Aa Ac Ag At pAPcPgPr PaPcPgt 3
- P
- P 1124p 3112
- P0000 P0010 P0100 P0110 P1100 P1110
- P011011
- P44
- Parametric Inference
- Parametric Sequence Alignment
- Pccaa
- Phylip
- Pi0 pi4 pi5 pi0
- Pi1 p22 Pm i1i2 im G N
- Pij n Ai A2 1 n p1 p
- Polytope propagation with specialized parameters
- Preface
- Pvivd2ik pvivd2jl pviVd2i pvivd2fcl pviVd2l pvivd2jk 315
- Qt PiPi PivjPiAj i j CT i A j i
- R
- R 1 fcieET
- Returning to our example
- Sequence alignment
- Small Trees and Generalized Neighbor Joining
- Specialization
- Splitstree
- Statistics
- Studies on the four themes
- T 1 1 1
- T C T A T A T A T A G G C T C C C G C C
- The core of the implementation
- The EM Algorithm for Hidden Markov Models - 2
- The structure of the alignment polygon
- The sumproduct algorithm for HMMs
- The sumproduct algorithm for sequence alignment
- Toric Markov chains
- Toric models
- Tree Construction using Singular Value Decomposition
- Tropical arithmetic and dynamic programming
- Tropical Pfaffian
- Two auxiliary functions
- U
- Ud vea [ejiaCzJy j1
- University Press
- V
- 1
- Ppv
- V V TTejse TT fjsf
- Verticesinfacets
- W - 2 3
- X - 2
- 1 R[y2x2