Figure 411

Voltage-dependent net magnesium (Mg) flux in the cortical thick ascending limb (cTAL). Within the isolated mouse cTAL, Mg flux (JMg) occurs in response to voltage-dependent mechanisms. With a relative lumen-positive transepithelial potential difference (Vt), Mg reabsorption increases (positive JMg). Mg reabsorption equals zero when no voltage-dependent difference exists, and Mg is capable of moving into the tubular lumen (negative JMg) when a lumen-negative voltage difference exists [1,16]. (From di Stefano and coworkers [16]).

Effect of hormones on magnesium (Mg) transport in the cortical thick ascending limb (cTAL). In the presence of arginine vasopressin (AVP), glucagon (GLU), human calcitonin (HCT), parathyroid hormone (PTH), 1,4,5-isoproteronol (ISO), and insulin (INS), increases occur in Mg reabsorption from isolated segments of mouse cTALs. These hormones have no effect on medullary TAL segments. As already has been shown in Figure 4-3, these hormones affect intracellular "second messengers" and cellular Mg movement. These hormone-induced alterations can affect the paracellular permeability of the intercellular tight junction. These changes may also affect the transepithelial voltage across the cTAL. Both of these forces favor net Mg reabsorption in the cTAL [1,2,7,8]. Asterisk—significant change from preceding period; JMg—Mg flux; C—control, absence of hormone. (Adapted from de Rouffignac and Quamme [1].)

Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment