Quantitative aspects of adaptation to respiratory acidosis. Respiratory acidosis, or primary hypercapnia, is the acid-base disturbance initiated by an increase in arterial carbon dioxide tension (PaCO2) and entails acidification of body fluids. Hypercapnia elicits adaptive increments in plasma bicarbonate concentration that should be viewed as an integral part of respiratory acidosis. An immediate increment in plasma bicarbonate occurs in response to hypercapnia. This acute adaptation is complete within 5 to 10 minutes from the onset of hypercapnia and originates exclusively from acidic titration of the nonbicarbonate buffers of the body (hemoglobin, intracellular proteins and phosphates, and to a lesser extent plasma proteins). When hypercapnia is sustained, renal adjustments markedly amplify the secondary increase in plasma bicarbonate, further ameliorating the resulting acidemia. This chronic adaptation requires 3 to 5 days for completion and reflects generation of new bicarbonate by the kidneys as a result of upregulation of renal acidification [2]. Average increases in plasma bicarbonate and hydrogen ion concentrations per mm Hg increase in PaCO2 after completion of the acute or chronic adaptation to respiratory acidosis are shown. Empiric observations on these adaptations have been used for construction of 95% confidence intervals for graded degrees of acute or chronic respiratory acidosis represented by the areas in color in the acid-base template. The black ellipse near the center of the figure indicates the normal range for the acid-base parameters [3]. Note that for the same level of PaCO2, the degree of acidemia is considerably lower in chronic respiratory acidosis than it is in acute respiratory acidosis. Assuming a steady state is present, values falling within the areas in color are consistent with but not diagnostic of the corresponding simple disorders. Acid-base values falling outside the areas in color denote the presence of a mixed acid-base disturbance [4].


0 0

Post a comment