Spinal cord mri t2 axial views radiograph

Dorn Spinal Therapy

Spine Healing Therapy

Get Instant Access

MRI views of the spinal cord are shown in the axial plane at the C4 (fourth cervical vertebral) level; the orientation should be noted with anterior (ventral) at the top. The CSF is bright in these T2-weighted images. The position of the spinal cord can be easily visualized within the vertebral canal, with the surrounding CSF space. The vertebral bodies and lamina are dark; the muscles of the neck can be visualized.

In both images it is possible to see the "butterfly" shape of the gray matter of the spinal cord (see Figure 1 and Figure 4). The orientation of the cord should be noted. In the upper image, the dorsal root and ventral root can be seen, as they head for the intervertebral foramen to form the spinal nerve (see Figure 1); neuroradiologists often call this the neural foramen. In the lower image, taken just a few millimeters below, the spinal nerve can be seen in the intervertebral (neural) foramen.

Note to the Learner: In viewing these radiographs, the left side of the image is in fact the right side of the patient and likewise on the other side — this is the convention. The veins, internal jugular and external jugular, appear white with MRI imaging; the common carotid artery appears dark because of the rapid flow of blood in the arteries; note the presence of the vertebral artery (dark) in the foramen in the transverse process.

Clinical Aspect

Any abnormal protrusion of a vertebra or disc could be visualized, as well as tumors within the vertebral canal or of the cord itself (see also Figure 3). An enlargement of the central canal, called syringomyelia, is an unusual though not rare disease of the upper cord (discussed with Figure 32). A small arterio-venous (A-V) malformation may also be visualized with MRI within the spinal cord.

As discussed previously, the spinal cord may be transected following traumatic injuries. The immediate effect of an acute complete spinal cord transection in the human is a complete shutdown of all spinal cord activity. This is referred to as spinal shock. Neurologically, there is a loss of all muscle tone and an absence of all deep tendon reflexes, and no plantar response (i.e., no Babin-ski sign; discussed in Section B, Part III, Introduction). After a few weeks, intrinsic spinal reflexes appear, now no longer modified from higher control centers. (The details of the pathways involved will be discussed in Section B of this atlas.) The end result is a dramatic increase in muscle tone (spasticity) and hyperactive deep tendon reflexes (discussed with Figure 49B and also with Figure 68). Thereafter, there occur a number of abnormal or excessive reflex responses. Such patients require exceptional care by the nursing staff.

Common carotid artery

External jugular vein

Internal jugular vein

Spinal roots Ventral Dorsal

Spinal nerve

Lamina of vertebra

Spinal nerve

Lamina of vertebra

Mri Spinal Root Axial View

Vertebral body

Vertebral artery (within transverse foramen)

Subarachnoid space (CSF)

Spinal cord

Vertebral body

Vertebral artery (within transverse foramen)

Subarachnoid space (CSF)

Spinal cord

FIGURE 5: Spinal Cord 7 — MRI: Axial View (radiograph)

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Responses

Post a comment